RFdiffusion: Creating Binders & Identifying Protein-Protein Interactions

INTRODUCTION

For today’s workshop, we’re going to be running through an example of how to create binders using
RFdiffusion, and do some pre-processing using custom scripts. We’'ll also show how this may be used to find
structurally similar proteins that already exist. RFdiffusion is available in a variety of formats including a via
command line, Google Colab Notebook, and through NVIDIA (https://build.nvidia.com/ipd/rfdiffusion). In this
session we’ll get you using the command line implementation on Atlas, and the NVIDIA implementation. Unlike
in the FoldSeek session, | don’t recommend trying to use RFdiffusion without GPUs.

SET UP [## Estimated runtime: < 5 minutes]
1. Login to Atlas Open OnDemand using your web browser (https://atlas-ood.hpc.msstate.edu/) and

navigate to your working directory for this workshop. Mine, for example, is in the shared directory under
my username (Files > /90daydata > Change directory > /90daydata/shared/olivia.haley)

2. Once in your working directory, select Open in Terminal. A new window should open.

3. Copy the shared directory containing the scripts and structures for this demo to your working directory.

cp -r /90@daydata/shared/protein_structure_ workshop/RFdiffusion/ .

cd RFdiffusion
1s -1tr

drwxr-xr-x 2 olivia.haley olivia.haley 4096 Nov 8 12:16 models

drwxr-xr-x 2 olivia.haley proj-maizegdb 4096 Nov 12 12:07 mock_binders

-rwxr-xr-x 1 olivia.haley olivia.haley 367821 Nov 12 12:45 7BNT.pdb

-rwxr-xr-x 1 olivia.haley olivia.haley 5324 Nov 12 14:36 rfdiffusion_env.yaml
drwxr-xr-x 3 olivia.haley olivia.haley 4096 Nov 12 18:27 example_outputs
-rwxr-xr-x 1 olivia.haley olivia.haley 80108 Nov 12 18:28 AF-Q7XJV3-Fl-model_vé4.pdb
drwxr-xr-x 2 olivia.haley olivia.haley 4096 Nov 12 18:29 rice_DB

drwxr-x—-—— 2 olivia.haley olivia.haley 4096 Nov 13 13:51 workshop_scripts

4. Create the conda environment for this workshop. Note that the environment for RFdiffusion can be tricky
to set up from scratch due to its dependencies. You also may experience a long running time when

downloading the model weights. We’ve saved you time by pre-downloading the model weights into the

models directory, and we’ll set up the environment together.

sbatch workshop_scripts/sl_setup.sh

TUTORIAL

In this tutorial, we’re going to be working with a well-known fungal effector called Avr-PikD. It is a protein from
the organism Magnaporthe oryzae which causes rice blast disease in rice. Its structure has already been
determined and there is a good amount of evidence for its protein binding residues, making it a good candidate
for high confidence predictions. Today we’ll be making only 10 binders for this protein, but in reality you may
want to make between hundreds to thousands of binders.

Step 1. [Optional] Create 10 binders for Avr-PikD

When used for binder structure prediction, RFdiffusion will output the binder complexed with the input protein
(bottom left) in PDB format, as well as a .TRB file containing the metadata for the complex. In practice, |
would recommend using the a100s, this script with the mig7 partition may take more than an hour to
run. So because of this, we’re not going to run the diffusion step together. Instead, we’re going to use a
directory of binders called mock_binders that | generated beforehand. Below is an example of one of the mock
binder complexes.

sbatch workshop_scripts/s2_run_rfdiffusion.sh

1s -1 mock_binders/

-rw-r-—-——- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_10.pdb
-rw-r---—- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_1.pdb
-rw-r---—-- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_2.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_3.pdb
-rw-r-—-——- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_4.pdb
-rw-r-—--—-- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_5.pdb
-rw-r-—--—- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_é.pdb
-rw-r-—--- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_7.pdb
-rw-r-—-——- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_8.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 42612 Nov 12 12:19 mock_binder_9.pdb

Step 2. Pre-filter the binders based on the anticipated protein contacts (‘hotspots’)
[## Estimated runtime: <1 minute]

If we look at the structure of our binders in Mol*, we’ll also see that
RFdiffusion generated a variety of protein structures that appear to interact
with different residues of our query protein (example on the lefft,
orange/yellow=query protein). This illustrates the point that RFdiffusion will not
use all of your input ‘hotspots’ when generating a binder. According to its
GitHub, only 0-20% of these hotspots will be passed during binder generation.

We want to eliminate binders on the lower end of this threshold, and keep only
binders where an interaction is most likely to occur. To do this, we’ll use the
distance between the carbon atoms at the query hotspots and target protein
backbone.

Step 2 (continued)

This script filters out binders where there are little to no interactions occurring at the pre-defined hotspots. The
.PDB files containing the ‘acceptable’ binders will be split into their chains, and only the binder chain (Chain A)
will be placed into a directory called accepted binders. The script also generates a .TSV file containing the
residue distances.

sbatch workshop_scripts/s3_filter_and_extract_binders.sh

We can see that not all of the binders passed our initial, hotspot-based filtering.

ls -1 accepted_binders/

-TW-Y————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_2_A.pdb
-TW-Y————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_3_A.pdb
-IW-T————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_5_A.pdb
-TW-Y————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_é_A.pdb
-IW-T————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_7_A.pdb
-TW-Y————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_8_A.pdb
-IW-T————— 1 olivia.haley proj-maizegdb @ Nov 12 16:44 mock_binder_9_A.pdb

And if we want, we can see the distances calculated for each binder and hotspot:

head residue_distances.tsv

design_name residue index distance
mock_binder_6.pdb HIS 46 8.347101
mock_binder_6.pdb PRO 47 9.983383
mock_binder_6.pdb GLY 48 7.5606647
mock_binder_6.pdb ARG 64 10.824784
mock_binder_6.pdb ASP 66 7.690056
mock_binder_6.pdb ALA 67 8.581246
mock_binder_8.pdb HIS 46 10.848546
mock_binder_8.pdb PRO 47 12.08681
mock_binder_8.pdb GLY 48 9.71202

Step 3. Run FoldSeek to identify homologous host protein substructures
You may be interested in which binders resemble experimentally determined protein-protein interactions. For
this, we can use FoldSeek! There are too few binders in this example to get meaningful results, but it is
something to keep in mind. In my experience, less than 100 binders will likely lead to spurious results. When
interpreting the results, there are a few factors to keep in mind, such as:
e What type of protein is your anticipated PPI?
e Where is it located in the cell? Is the subcellular location similar to that of your query protein in the PPI?
e Does the target protein have annotations that could help you distinguish likely PPIs?

sbatch workshop_scripts/s4_foldseek run_initial_query.sh

head AvrPikD_binder_target foldseek results.tsv

Amongst our query proteins, for example, we see proteins like Q7XJV3 and Q7XJV0 which contain a Heavy
Metal Binding Domain that is found in various resistance proteins in rice! If we take closer look at the alignment
of the binder with the protein, we find that the overlap is in that critical domain. We’ll want to take a closer look
at these target proteins for in vitro validation! This is an overview of the protein and its domains from the
database InterPro (https://www.ebi.ac.uk/interpro/protein/unreviewed/Q7XJV3/).

Q7x3v3. HMA domain-containing protein

UniProtKB/TrEMBL protein d

Short name Q7XIV3_ORYS3 External Links
Overview .
UniProt
Entries 2 Length 122 amino acids AlphaFold
AlphaFold 1 Species Oryza sativa subsp. japonica (Rice) Foldseek
Sequence Proteome UP000059680 Search sequence with
InterProScan
Gene 0s04g0469000
4. Generate TSV
Family membership [F| Heavy metal-associated isoprenylated plant protein 47/16 (1PR042885)

| & Download sequence (FASTA) I

Entry matches to this protein® . | Options ~ ” Show all annotations |
10 20 0 o 50 & 7 o % 100 o 120
1 122
50 100
HKOKEVIKYSHPCERSRSKANKLVUHAS GYSSVE TGOGKDRL BAARANAAANARARAANAARNA

w Alphafold Confidence
IS B . pwoOT "

» Families
Representative families

v Domains

S HMA_2 Representative domains
Unintegrated
A CATHQENESD: 63D5A:3.30.70.100
1 HMA_dom - IPRO06121
HMA_2 PROFILE: HMA_2 - PS50846

InterPro GO terms

Biological Process Molecular Function Cellular Component

None + metalion binding (G0:0046872) None

[Optional] View the FoldSeek alignment.

Running the following will provide an HTML file that shows the structural alignment of the binder and target
protein’s domain. Notice that because we didn’t proceed with using Protein MPNN & AlphaFold to assign a
sequence to the binder, the structure will contain all Glycine residues.

sbatch workshop_scripts/s5_view_query_ target_alignment.sh

Results: mock_binder_9_A

TMP/6761969408155141974/TARGET 1 hits GRAPHICAL NUMERIC
Target Prob. Seq.Id. E-Value Positionin query @ Alignment
" - - =)
IAF-O?XJVJ-H-moch\ﬂ 0.89 0.061 5.60e-1 7 = (=)
TM-Score: 0.’6‘577{ @
RMSDY2.3
! y
pelelefele{ele{elelefele{e]ele{ele]elepdel{eidelelelelelelcfelele{elefeleleielele]ele{elefelelcle{efeieleptuieilelele{epdelelefelele] ~
+ + G GG GG ++ + P ¢
- =-CEKSRSKAMKLVVMASGV EVTGDG--KDRLQVVGDGVDAACLVTCLRKKIGHAELVQVEEVK < w
Q756 1)
D)
4
T 76 E \
)
Select target residues to highlight their structure

Step 4. RFdiffusion on the NVIDIA NIM microservice [## Estimated runtime: <1 minute]

NVIDIA NIM is a part of NVIDIA, and provides a set of easy-to-use microservices designed to facilitate the use
of generative Al tools. They also offer pre built containers and APIs to facilitate sharing models. For this part of
the tutorial we’re going to go through an example using NVIDIA https://build.nvidia.com/ipd/rfdiffusion.
Compared to the Google Colab, this is the more simple implementation of RFdiffusion since you only need to
specify your target protein, contigs, and hotspot residues. Depending on the user preferences, this can be
disadvantageous as you cannot prepare more than one run at a time without a key.

If you choose to follow along, you'll need the following:
e Download the .PDB file (7BNT.pdb)
e Contig specs: C30-113/0 50-75
e Hotspot Residues specs: C46,C47,C48,C64,C66,C67

ZNVIDIA

N

e Build with this NIM

Output

7BNT.pdb

Hotspot Resi

€46,C47,048,C64,C66,C67

Step 5A. Google Colab RFdiffusion: Setup [## Estimated runtime: < 5 minutes]

This is the most updated version of the Google Colab implementation of RFdiffusion
(https://colab.research.google.com/github/sokrypton/ColabDesign/blob/main/rf/examples/diffusion.ipynb). You
can log into Google Colab, or follow along here. The notebook is a good compromise between the simplicity of
the NVIDIA implementation, and the more detailed command line code.

To get started, connect to a runtime. Every Google account has access to a limited number of free runtime
units on the T4 GPUs. Run the block ‘ setup RFdiffusion * (click the play button) to install the packages and
dependencies. This should take around 3 minutes.

Step 5B. Google Colab RFdiffusion: Input Parameters for Binder Generation

[## Estimated runtime: < 7 minutes]

As it's running, you’ll also see protein backbone being generated! After the entire run, you'll have the option of
viewing each binder. If you'd like to follow along, the parameters you’ll need for this step are:

name: AvrPikD your name for the binders

contigs: A1-113:75 specifies the generation of binders 75 amino-acids long between
residues 1-113 on the chain A of the input .PDB file.

pdb: C4B8B8 the name of the .PDB file to use. The Google Colab implementation
of RFdiffusion is set up to automatically pull from the AlphaFold2
database if you use a UniprotKB identifier. So, In this instance,
we’re using the UniprotKB identifier for AvrPikD (C4B8B8)

hotspot: A46,A47,A48,A64,A66,A67 The chain and residues at the protein-protein interaction interface.

chains: A The chain used for diffusion

O NN - |
> run RFdiffusion to generate a backbone

Q- name: ’ AvrPikD ‘

contigs: { A1-113:75 ‘

pdb: [C4B8B8 }

iterations: ’ 50 - }

hotspot: { A46,A47,A48,A64,A66,A67 ‘

num_designs: [8 - }

visual: l image -]

symmetry settings

symmetry: [none v] running -_ -
order: [1 v]
chains: [A]

add_potential:

e symmetry='auto' enables automatic symmetry dectection with AnAnaS.
e chains="A,B" filter PDB input to these chains (may help auto-symm detector)
e add_potential to discourage clashes between chains

advanced settings

partial_T: | auto -

« specify number of noising steps (only used for the partial diffusion protocol)

use_beta_model:

« if you are seeing lots of helices, switch to the "beta" params for a better SSE balance.

> Display 3D structure

: © animate: | none

color: ‘ chain

dpi:] 100

Show code

()

design: | 0 v

Step 5C. Google Colab RFdiffusion: Input Parameters for Binder Generation
[## Estimated runtime: < 7 minutes]
The Google Colab implementation takes binder generation one step forward by using AlphaFold2-multimer and

ProteinMPNN. These pipelines design a sequence to the binder, and indicate the likelihood that the structure is
‘real’ based on AlphaFold2-multimer parameters.

num_seqgs: 8 The number of sequences to sample for each binder
mpnn_sampling_temp: 0.1 The diversity of sequences to sample

rm_aa: Amino acids to exclude from the sequences

use_solubleMPNN: False Encourage solubility when designing protein sequences
intial_guess: True The chain and residues at the protein-protein interaction interface.
num_recycles: 3 The number of recycles

use_multimier: True The chain used for diffusion

LN ZRR-JNE « J N0 N T

> run ProteinMPNN to generate a sequence and AlphaFold to validate

(>) ProteinMPNN Settings

num_seqs: [8 -]
mpnn_sampling_temp: [0.1 v]
rm_aa: [Cc]

use_solubleMPNN: []

« mpnn_sampling_temp - control diversity of sampled sequences. (higher = more diverse).
e rm_aa='C' - do not use [Clysteines.
e use_solubleMPNN - use weights trained only on soluble proteins. See preprint.

AlphaFold Settings

initial_guess: [4

« soft initialization with desired coordinates, see paper.

num_recycles: | 3 v

« for binder design, we recommend initial_guess=True num_recycles=3

use_multimer: [J]

o use_multimer - use AlphaFold Multimer v3 params for prediction.

Show code

2024-11-01 21:59:13.646698: W external/xla/xla/service/gpu/nvptx_compiler.cc:893] The NVIDIA driver's CUDA version is 12.2 which is older than the PTX com
running proteinMPNN...

running AlphaFold...

design:@ n:0@ mpnn:1.059 plddt:0.749 i _ptm:0.226 i_pae:17.654 rmsd:37.308 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G

design:@ n:1 mpnn:1.181 plddt:0.668 i_ptm:0.105 i_pae:21.804 rmsd:37.916 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:2 mpnn:1.037 plddt:0.843 i ptm:0.307 i_pae:15.196 rmsd:37.070 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:3 mpnn:1.182 plddt:0.580 i _ptm:0.097 i_pae:22.459 rmsd:35.77@0 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:4 mpnn:1.874 plddt:0.798 i _ptm:0.167 i_pae:19.379 rmsd:37.568 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:5 mpnn:1. plddt:0.751 i_ptm:0.138 i_pae:19.578 rmsd:37.453 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:6 mpnn: plddt:0.792 i_ptm:0.087 i_pae:22.830 rmsd:29.548 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:@ n:7 mpnn: plddt:0.585 i_ptm:0.195 i_pae:19.086 rmsd:37.560 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
design:1 n:@ mpnn:1. plddt:0.505 i_ptm:0.137 i_pae:22.948 rmsd:28.976 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/E
design:1 n:1 i_ptm:0.118 i_pae:21.890 rmsd:30.638 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/E
design:1 n:2 plddt:0.474 i_ptm:0.137 i_pae:21.557 rmsd:29.616 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/D
design:1 n:3 plddt:0.489 i _ptm:0.149 i_pae:21.048 rmsd:31.144 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/P
design:1 n:4 plddt:0.547 i_ptm:0.208 i_pae:21.393 rmsd:23.728 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/P
design:1 n:5 plddt:0.465 i_j i_pae:21.407 rmsd:28.987 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/P
design:1 n:6 plddt:0.527 i_j i_pae:21.024 rmsd:23.773 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/E
design:1 n:7 plddt:0.481 i | i_pae:21.865 rmsd:28.970 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/P
design:2 n:@ plddt:0.492 i_pt i_pae:23.100 rmsd:34.370 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:1 plddt:0.642 i_j i_pae:23.179 rmsd:20.780 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:2 plddt:0.608 i_j i_pae:23.763 rmsd:42.132 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:3 plddt:0.640 i_| i_pae:22.915 rmsd:20.972 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:4 plddt:0.600 i i_pae:23.622 rmsd:13.986 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:5 plddt:0.700 i_ptm:0.091 i_pae:23.330 rmsd:37.175 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:6 plddt:0.511 i _ptm:0.080 i_pae:23.745 rmsd:34.514 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/A
design:2 n:7 plddt:0.609 i_ptm:0.078 i_pae:23.948 rmsd:22.542 SGRENLYFQGHMAAPARFCVYYDGHLPATRVLLMYVRIGTTATITARGHEFEVEAKDQNCKVILTNGKQAPDWLAAEPY/G
decian:3 n:0 nlddt:0.419 i ntm:0.092 i nae:23.36A rmcd:31.6RA SGRFNI YFOGHMAAPARFCVYYNGHI PATRVI | MYVRTGTTATTT) KVTI AAFPY /1
Th h th tion to vi dd load th Its. Th tro208
en you have the option to view and download the results. The » Display best resul
download may take a while depending on the complexity and 10 swoncode

©

number of binders you create.

