INTRODUCTION

For today's workshop, we're going to be running through an example of how to create binders using RFdiffusion, and do some pre-processing using custom scripts. We'll also show how this may be used to find structurally similar proteins that already exist. RFdiffusion is available in a variety of formats including a via command line, <u>Google Colab Notebook</u>, and through NVIDIA (<u>https://build.nvidia.com/ipd/rfdiffusion</u>). In this session we'll get you using the command line implementation on Atlas, and the NVIDIA implementation. Unlike in the FoldSeek session, I don't recommend trying to use RFdiffusion without GPUs.

SET UP [## Estimated runtime: < 5 minutes]

- Login to Atlas Open OnDemand using your web browser (https://atlas-ood.hpc.msstate.edu/) and navigate to your working directory for this workshop. Mine, for example, is in the shared directory under my username (Files > /90daydata > Change directory > /90daydata/shared/olivia.haley)
- 2. Once in your working directory, select **Open in Terminal**. A new window should open.
- 3. Copy the shared directory containing the scripts and structures for this demo to your working directory.

```
cp -r /90daydata/shared/protein structure workshop/RFdiffusion/ .
 cd RFdiffusion
 ls -ltr
drwxr-xr-x 2 olivia.haley olivia.haley
                                          4096 Nov 8 12:16 models
drwxr-xr-x 2 olivia.haley proj-maizegdb
                                          4096 Nov 12 12:07 mock_binders
-rwxr-xr-x 1 olivia.haley olivia.haley 367821 Nov 12 12:45 7BNT.pdb
-rwxr-xr-x 1 olivia.haley olivia.haley
                                          5324 Nov 12 14:36 rfdiffusion_env.yaml
drwxr-xr-x 3 olivia.haley olivia.haley
                                          4096 Nov 12 18:27 example_outputs
-rwxr-xr-x 1 olivia.haley olivia.haley
                                         80108 Nov 12 18:28 AF-Q7XJV3-F1-model v4.pdb
drwxr-xr-x 2 olivia.haley olivia.haley
                                         4096 Nov 12 18:29 rice_DB
drwxr-x--- 2 olivia.haley olivia.haley
                                          4096 Nov 13 13:51 workshop_scripts
```

4. Create the conda environment for this workshop. Note that the environment for RFdiffusion can be tricky to set up from scratch due to its dependencies. You also may experience a long running time when downloading the model weights. We've saved you time by pre-downloading the model weights into the *models* directory, and we'll set up the environment together.

```
# Create the conda environment and setup RFdiffusion
sbatch workshop_scripts/s1_setup.sh
```

TUTORIAL

In this tutorial, we're going to be working with a well-known fungal effector called Avr-PikD. It is a protein from the organism *Magnaporthe oryzae* which causes rice blast disease in rice. Its structure has already been determined and there is a good amount of evidence for its protein binding residues, making it a good candidate for high confidence predictions. Today we'll be making only 10 binders for this protein, but in reality you may want to make between hundreds to thousands of binders.

Step 1. [Optional] Create 10 binders for Avr-PikD

When used for binder structure prediction, RFdiffusion will output the binder complexed with the input protein (*bottom left*) in PDB format, as well as a .TRB file containing the metadata for the complex. In practice, I would recommend using the a100s, this script with the mig7 partition may take more than an hour to run. So because of this, we're not going to run the diffusion step together. Instead, we're going to use a directory of binders called *mock_binders* that I generated beforehand. Below is an example of one of the mock binder complexes.

#Edit the script as needed
sbatch workshop_scripts/s2_run_rfdiffusion.sh

#View an example of the outputs
ls -l mock_binders/

-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	<pre>mock_binder_10.pdb</pre>
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_1.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_2.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_3.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_4.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_5.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_6.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_7.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_8.pdb
-rw-r	1	olivia.haley	proj-maizegdb	42612	Nov	12	12:19	mock_binder_9.pdb

Step 2. Pre-filter the binders based on the anticipated protein contacts ('hotspots') [## Estimated runtime: < 1 minute]

If we look at the structure of our binders in Mol*, we'll also see that RFdiffusion generated a variety of protein structures that appear to interact with different residues of our query protein (*example on the left*; orange/yellow=query protein). This illustrates the point that RFdiffusion will not use all of your input 'hotspots' when generating a binder. According to its GitHub, only 0-20% of these hotspots will be passed during binder generation.

We want to eliminate binders on the lower end of this threshold, and keep only binders where an interaction is most likely to occur. To do this, we'll use the distance between the carbon atoms at the query hotspots and target protein backbone.

Step 2 (continued)

This script filters out binders where there are little to no interactions occurring at the pre-defined hotspots. The .PDB files containing the 'acceptable' binders will be split into their chains, and only the binder chain (Chain A) will be placed into a directory called *accepted_binders*. The script also generates a .TSV file containing the residue distances.

```
#Run the script
sbatch workshop_scripts/s3_filter_and_extract_binders.sh
```

We can see that not all of the binders passed our initial, hotspot-based filtering.

```
#View the accepted binders
ls -l accepted_binders/
```

```
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_2_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_3_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_5_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_6_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_7_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_8_A.pdb
-rw-r----- 1 olivia.haley proj-maizegdb 0 Nov 12 16:44 mock_binder_8_A.pdb
```

And if we want, we can see the distances calculated for each binder and hotspot:

<pre>#Edit the scri head residue_d</pre>	pt as ne istances	eaea .tsv		
design_name	residue	index	dista	nce
mock_binder_6.p	db	HIS	46	8.347101
<pre>mock_binder_6.p</pre>	db	PRO	47	9.983383
mock_binder_6.p	db	GLY	48	7.5606647
mock_binder_6.p	db	ARG	64	10.824784
mock_binder_6.p	db	ASP	66	7.690056
mock_binder_6.p	db	ALA	67	8.581246
mock_binder_8.p	db	HIS	46	10.848546
mock_binder_8.p	db	PRO	47	12.08681
mock_binder_8.p	db	GLY	48	9.71202

Step 3. Run FoldSeek to identify homologous host protein substructures

You may be interested in which binders resemble experimentally determined protein-protein interactions. For this, we can use FoldSeek! There are too few binders in this example to get meaningful results, but it is something to keep in mind. In my experience, less than 100 binders will likely lead to spurious results. When interpreting the results, there are a few factors to keep in mind, such as:

- What type of protein is your anticipated PPI?
- Where is it located in the cell? Is the subcellular location similar to that of your query protein in the PPI?
- Does the target protein have annotations that could help you distinguish likely PPIs?

#Run FoldSeek against a target database of rice proteins and Filter the results by TM score sbatch workshop_scripts/s4_foldseek_run_initial_query.sh

#Optionally view the results file
head AvrPikD_binder_target_foldseek_results.tsv

Amongst our query proteins, for example, we see proteins like Q7XJV3 and Q7XJV0 which contain a Heavy Metal Binding Domain that is found in various resistance proteins in rice! If we take closer look at the alignment of the binder with the protein, we find that the overlap is in that critical domain. We'll want to take a closer look at these target proteins for *in vitro* validation! This is an overview of the protein and its domains from the database InterPro (https://www.ebi.ac.uk/interpro/protein/unreviewed/Q7XJV3/).

[Optional] View the FoldSeek alignment.

Running the following will provide an HTML file that shows the structural alignment of the binder and target protein's domain. Notice that because we didn't proceed with using Protein MPNN & AlphaFold to assign a sequence to the binder, the structure will contain all Glycine residues.

Step 4. RFdiffusion on the NVIDIA NIM microservice [## Estimated runtime: < 1 minute]

NVIDIA NIM is a part of NVIDIA, and provides a set of easy-to-use microservices designed to facilitate the use of generative AI tools. They also offer pre built containers and APIs to facilitate sharing models. For this part of the tutorial we're going to go through an example using NVIDIA <u>https://build.nvidia.com/ipd/rfdiffusion</u>. Compared to the Google Colab, this is the more simple implementation of RFdiffusion since you only need to specify your target protein, contigs, and hotspot residues. Depending on the user preferences, this can be disadvantageous as you cannot prepare more than one run at a time without a key.

If you choose to follow along, you'll need the following:

- Download the .PDB file (7BNT.pdb)
- Contig specs: C30-113/0 50-75
- Hotspot Residues specs: C46,C47,C48,C64,C66,C67

A Explore NIM Docs වී Forums වූ		Logi
ipd / rfdiffusion (RUM ANYWHERE) A generative model of protein backbones for protein binder design. (bionemo) (biology) (drug discovery) (protein generation) (drug discovery)	Build with this NIM	
Experience Projects Model Card	API Reference	
Input	Output	
	Proview Ascii	
Target Protein * 🕕		
TBNT.pdb File Types: .pdb Upload New File		
Contigs * ()		
C30-113/0 50-75		
rotspor (residues		
Diffusion Steps ()		
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90		
GOVERNING TERMS. Your use of this API is governed by the NVDIA API Trial Service Terms of Use; and the use of this Reset Run model is governed by the NVDIA AI Foundation Models Community Learne and the BSD Learne.		

Step 5A. Google Colab RFdiffusion: Setup [## Estimated runtime: < 5 minutes]

This is the most updated version of the Google Colab implementation of RFdiffusion

(https://colab.research.google.com/github/sokrypton/ColabDesign/blob/main/rf/examples/diffusion.ipynb). You can log into Google Colab, or follow along here. The notebook is a good compromise between the simplicity of the NVIDIA implementation, and the more detailed command line code.

To get started, connect to a runtime. Every Google account has access to a limited number of free runtime units on the T4 GPUs. Run the block ' setup **RFdiffusion** ' (click the play button) to install the packages and dependencies. This should take around 3 minutes.

Step 5B. Google Colab RFdiffusion: Input Parameters for Binder Generation [## Estimated runtime: < 7 minutes]

As it's running, you'll also see protein backbone being generated! After the entire run, you'll have the option of viewing each binder. If you'd like to follow along, the parameters you'll need for this step are:

name: AvrPikDyour name for the binderscontigs: A1-113:75specifies the generation of binders 75 amino-acids long between residues 1-113 on the chain A of the input .PDB file.odb: C4B8B8the name of the .PDB file to use. The Google Colab implementation of RFdiffusion is set up to automatically pull from the AlphaFold2 database if you use a UniprotKB identifier. So, In this instance, we're using the UniprotKB identifier for AvrPikD (C4B8B8)	
contigs : A1-113:75	specifies the generation of binders 75 amino-acids long between residues 1-113 on the chain A of the input .PDB file.
pdb : C4B8B8	the name of the .PDB file to use. The Google Colab implementation of RFdiffusion is set up to automatically pull from the AlphaFold2 database if you use a UniprotKB identifier. So, In this instance, we're using the UniprotKB identifier for AvrPikD (C4B8B8)
hotspot: A46,A47,A48,A64,A66,A67	The chain and residues at the protein-protein interaction interface.
chains: A	The chain used for diffusion

_		\uparrow	\downarrow	Ð	\$ 'n	Ū	:
> ru	n RFdiffusion to generate a backbone	_					
Q	name: AvrPikD]"
	contigs: (A1-113:75]"
	pdb: "C4B8B8]"
	iterations: 50						•
	hotspot: 446,A47,A48,A64,A66,A67]"
	num_designs: 8						•
	visual: image						•

symmetry	y settings	-
symmetry:	none -	running
order: 1		
chains:	A	
add_poten	tial: 🔽	
 symmet chains add_pot 	ry='auto' enables automatic symmetry dectection with <u>AnAnaS</u> . ="A,B" filter PDB input to these chains (may help auto-symm detector) tential to discourage clashes between chains	100
advanced	settings	
partial_i	:	
use_beta_	model: 🗹	
• if you ar	e seeing lots of helices, switch to the "beta" params for a better SSE balance.	
Vicelay 2D of	tauatura	
animate:	none	<i>~</i> 3.
color: c	hain	And Sha
dpi: 100)	
Show code		\sim
design:	o 🗸	-

Step 5C. Google Colab RFdiffusion: Input Parameters for Binder Generation [## Estimated runtime: < 7 minutes]

The Google Colab implementation takes binder generation one step forward by using AlphaFold2-multimer and ProteinMPNN. These pipelines design a sequence to the binder, and indicate the likelihood that the structure is 'real' based on AlphaFold2-multimer parameters.

num_seqs: 8 mpnn_sampling_temp: 0.1 rm_aa: use_solubleMPNN: False	The number of sequences to sample for each binder								
mpnn_sampling_temp: 0.1	The diversity of sequences to sample								
rm_aa:	Amino acids to exclude from the sequences								
use_solubleMPNN: False	Encourage solubility when designing protein sequences								
intial_guess: True	The chain and residues at the protein-protein interaction interface.								
num_recycles: 3	The number of recycles								
use_multimier: True	The chain used for diffusion								

												\uparrow	\checkmark	Ð	\$	'n	Ū	:
r	un ProteinM	PNN to ge	nerat	e a seq	luer	nce ar	nd Al	phaF	old to	valid	ate							
D	ProteinMPNN	Settings																
	num_seqs:	8	8													•		
	mpnn samp	ling temp:	01															-
	FF																	ייר
	rm_aa:	С																
	use_solub	leMPNN:	ĺ															
	• mpnn_s	ampling_tem	p - cor	ntrol dive	ersity	of sar	mpled	seque	ences. (higher	= more	dive	rse).					
	• rm_aa=	'C' - do not u	ıse [C]	ysteines.														
	 use_so 	lubleMPNN -	use we	eights tra	ined	only o	on solu	ible pr	oteins.	See pro	<u>eprint</u> .							
	AlphaFold Set	tings																
	initial_g	uess: 🗸																
	 soft initialization with desired coordinates, see paper. 																	
	num_recyc	Les: 3																-
	• for bind	er design, we	recom	imend in	niti	.al_gu	iess=T	rue n	num_rea	cycles	=3							
	use multi	mer: 🗆																
	• use_mu	ltimer - use	Alphal	Fold Mult	time	r v3 pa	arams	for pre	ediction	۱.								
	Show code																	
0024	-11-01 21.50.12 646	609: Weyternal/	v1a/v1a/	convico (apu	. (nunti	compile	or cc.90	DZI The P	W/TDTA_de	iver's C	DA versi	on ic 1	2 2 14	ich ic	aldar	than	the F	TV
runn	ing proteinMPNN			service/gpu		x_compro		55] THE I	WIDIA UI	1001 3 00	DA VEISI	.011 13 1	12.2 WI		otuer	chan	che r	
desi desi desi	Ign:0 n:0 mpnn:1.059 Ign:0 n:1 mpnn:1.181 Ign:0 n:2 mpnn:1.037	/ plddt:0.749 1_p l plddt:0.668 i_p 7 plddt:0.843 i p	tm:0.226 tm:0.105 tm:0.307	i_pae:17.6 i_pae:21.8 i pae:15.1	554 rms 304 rms 196 rms	sd:37.30 sd:37.91 sd:37.07	18 SGRENL 16 SGRENL 10 SGRENL	LYFQGHMA/ LYFQGHMA/ LYFQGHMA/	APARFCVYY APARFCVYY APARFCVYY	DGHLPATRV DGHLPATRV DGHLPATRV	LLMYVRIG LLMYVRIG	TTATIT	ARGHEFE	VEAKDQ	NCKVIL NCKVIL	TNGKQ/ TNGKQ/ TNGKQ/	APDWLA APDWLA APDWLA	AE AE AAE
desi desi	gn:0 n:3 mpnn:1.182 gn:0 n:4 mpnn:1.074	plddt:0.580 i_p plddt:0.798 i_p	tm:0.097 tm:0.167	i_pae:22.4 i_pae:19.3	159 rm: 379 rm:	sd:35.77	0 SGRENL	LYFQGHMA/	APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATITA		VEAKDQ	NCKVIL	TNGKQ/	APDWLA	4AE
desi desi desi	Ign:0 n:6 mpnn:1.059 Ign:0 n:6 mpnn:1.059 Ign:0 n:7 mpnn:1.043) plddt:0.792 i_p 1 plddt:0.792 i_p 1 plddt:0.585 i p	tm:0.138 tm:0.087 tm:0.195	i_pae:19.5 i_pae:22.8 i pae:19.0	330 rm 330 rm 386 rm	sd: 37.45 sd: 29.54 sd: 37.56	18 SGRENL 18 SGRENL 50 SGRENL	LYFQGHMA/ LYFQGHMA/ LYFQGHMA/	APARFCVTT APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATIT	ARGHEFE	VEAKDQ	NCKVIL NCKVIL	TNGKQ/ TNGKQ/	APDWLA APDWLA APDWLA	AE AE AE
desi desi	gn:1 n:0 mpnn:1.337 gn:1 n:1 mpnn:1.400	plddt:0.505 i_p plddt:0.416 i_p	tm:0.137 tm:0.118	i_pae:22.9 i_pae:21.8	948 rm: 390 rm:	sd:28.97	6 SGRENL	LYFQGHMA/	APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATITA		VEAKDQ	NCKVIL	TNGKQ/	APDWLA	AE
desi desi	gn:1 n:2 mpnn:1.349 gn:1 n:3 mpnn:1.355 gn:1 n:4 mpnn:1.373	plddt:0.474 1_p plddt:0.489 i_p plddt:0.547 i n	tm:0.137 tm:0.149 tm:0.208	1_pae:21.5 i_pae:21.0	557 rm 048 rm 193 rm	sd:29.610 sd:31.14 sd:23.72	4 SGRENL SGRENL	LYFQGHMA/ LYFQGHMA/ VF0GHMA/	APARFCVYY APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATIT	ARGHEFE	VEAKDQ	NCKVIL NCKVIL	TNGKQ/ TNGKQ/ TNGKQ/	APDWLA APDWLA APDWLA	AEI AEI
desi desi	gn:1 n:5 mpnn:1.376 gn:1 n:6 mpnn:1.332	<pre>plddt:0.347 i_p plddt:0.465 i_p plddt:0.527 i_p</pre>	tm:0.129 tm:0.143	i_pae:21.4 i_pae:21.0	107 rms 124 rms	sd:28.98 sd:23.77	37 SGRENL 37 SGRENL	LYFQGHMA/ LYFQGHMA/	APARFCVYY	DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATITA	RGHEFE	VEAKDQ	NCKVIL	TNGKQ/	APDWLA	AEF
desi desi	gn:1 n:7 mpnn:1.333 an:2 n:0 mpnn:1.084	<pre>plddt:0.481 i_p plddt:0.492 i_p</pre>	tm:0.144 tm:0.090	i_pae:21.8 i_pae:23.1	365 rm: 100 rm:	sd:28.97 sd:34.37	0 SGRENL	LYFQGHMA/ LYFQGHMA/	APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\	'LLMYVRIG 'LLMYVRIG	TTATITA	ARGHEFE	VEAKDQ	NCKVIL	TNGKQ/ TNGKQ/	APDWLA APDWLA	AEP
desi desi		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	h	1 020177 1	179 rm	sd:20.78	SGRENL	LTFQGHMA/	APARFCVYY	UGHL PATR\	LIMYVRIG	TATITA	ARGHEFF	WEAKDO	MCKVT1	- ALC: 1/ (3/	a PDWL A	4 A E I
deci	gn:2 n:1 mpnn:1.068 gn:2 n:2 mpnn:1.110	<pre>3 plddt:0.642 i_p 9 plddt:0.608 i_p 5 plddt:0.608 i_p</pre>	tm:0.091 tm:0.085	i_pae:23.7	763 rm	sd: 42.13	2 SGRENL	YEOGHMA	APARFCVYY			TTATIT		VEAKDO	NCKVIL	TNGKQ/		AEF
desi desi	gn:2 n:1 mpnn:1.068 gn:2 n:2 mpnn:1.110 gn:2 n:3 mpnn:1.093 gn:2 n:4 mpnn:1.079 gn:2 n:5 mpnn:1.144	B plddt:0.642 i_p b plddt:0.608 i_p b plddt:0.640 i_p plddt:0.600 i_p plddt:0.700 i_p	tm:0.091 tm:0.085 tm:0.080 tm:0.076 tm:0.091	i_pae:23.7 i_pae:22.9 i_pae:23.6 i pae:23.3	763 rm 915 rm 522 rm 330 rm	sd:42.13 sd:20.97 sd:13.98 sd:37.17	2 SGRENL 2 SGRENL 6 SGRENL 5 SGRENI	LYFQGHMA/ LYFQGHMA/ LYFQGHMA/ LYFQGHMA/	APARFCVYY APARFCVYY APARFCVYY APARFCVYY	DGHLPATR\ DGHLPATR\ DGHLPATR\ DGHLPATR\	LLMYVRIG	TTATITATITATITATITATITATITATITATITATITA	ARGHEFE ARGHEFE ARGHEFE ARGHEFF	VEAKDQ VEAKDQ VEAKDQ VEAKDQ	NCKVIL NCKVIL NCKVIL	TNGKQ/ TNGKQ/ TNGKQ/ TNGKQ/ TNGK0/	APDWLA APDWLA APDWLA APDWLA	AEI AEI AEI

Then you have the option to view and download the results. The download may take a while depending on the complexity and number of binders you create.

