
RFdiffusion: Creating Binders & Identifying Protein-Protein Interactions 
 

INTRODUCTION 
For today’s workshop, we’re going to be running through an example of how to create binders using 
RFdiffusion, and do some pre-processing using custom scripts. We’ll also show how this may be used to find 
structurally similar proteins that already exist. RFdiffusion is available in a variety of formats including a via 
command line, Google Colab Notebook, and through NVIDIA (https://build.nvidia.com/ipd/rfdiffusion). In this 
session we’ll get you using the command line implementation on Atlas, and the NVIDIA implementation. Unlike 
in the FoldSeek session, I don’t recommend trying to use RFdiffusion without GPUs.  
 
SET UP [## Estimated runtime: < 5 minutes ] 

1. Login to Atlas Open OnDemand using your web browser (https://atlas-ood.hpc.msstate.edu/) and 
navigate to your working directory for this workshop. Mine, for example, is in the shared directory under 
my username ( Files > /90daydata > Change directory > /90daydata/shared/olivia.haley ) 
 

2. Once in your working directory, select Open in Terminal. A new window should open. 
 

3. Copy the shared directory containing the scripts and structures for this demo to your working directory. 
# Copy the shared directory from the shared folder 
cp -r /90daydata/shared/protein_structure_workshop/RFdiffusion/ . 
 
# Navigate to the copied directory and view its contents 
cd RFdiffusion 
ls -ltr 

       
 

4. Create the conda environment for this workshop. Note that the environment for RFdiffusion can be tricky 
to set up from scratch due to its dependencies. You also may experience a long running time when 
downloading the model weights. We’ve saved you time by pre-downloading the model weights into the 
models directory, and we’ll set up the environment together.  
# Create the conda environment and setup RFdiffusion 
sbatch workshop_scripts/s1_setup.sh  

 
 
 
 



TUTORIAL 
In this tutorial, we’re going to be working with a well-known fungal effector called Avr-PikD. It is a protein from 
the organism Magnaporthe oryzae which causes rice blast disease in rice. Its structure has already been 
determined and there is a good amount of evidence for its protein binding residues, making it a good candidate 
for high confidence predictions. Today we’ll be making only 10 binders for this protein, but in reality you may 
want to make between hundreds to thousands of binders. 
 
Step 1. [Optional] Create 10 binders for Avr-PikD 
When used for binder structure prediction, RFdiffusion will output the binder complexed with the input protein 
(bottom left) in PDB format, as well as a .TRB file containing the metadata for the complex. In practice, I 
would recommend using the a100s, this script with the mig7 partition may take more than an hour to 
run. So because of this, we’re not going to run the diffusion step together. Instead, we’re going to use a 
directory of binders called mock_binders that I generated beforehand. Below is an example of one of the mock 
binder complexes.  
 
#Edit the script as needed 
sbatch workshop_scripts/s2_run_rfdiffusion.sh 
 
#View an example of the outputs 
ls -l mock_binders/ 

 
 
 
 
 
 
 
 
 

 
 
Step 2. Pre-filter the binders based on the anticipated protein contacts (‘hotspots’) 
[## Estimated runtime: < 1 minute ] 

 
If we look at the structure of our binders in Mol*, we’ll also  see that 
RFdiffusion generated a variety of protein structures that appear to interact 
with different residues of our query protein (example on the left; 
orange/yellow=query protein). This illustrates the point that RFdiffusion will not 
use all of your input ‘hotspots’ when generating a binder. According to its 
GitHub, only 0-20% of these hotspots will be passed during binder generation. 
  
We want to eliminate binders on the lower end of this threshold, and keep only 
binders where an interaction is most likely to occur. To do this, we’ll use the 
distance between the carbon atoms at the query hotspots and target protein 
backbone.  



 
 
Step 2 (continued) 
This script filters out binders where there are little to no interactions occurring at the pre-defined hotspots. The 
.PDB files containing the ‘acceptable’ binders will be split into their chains, and only the binder chain (Chain A) 
will be placed into a directory called accepted_binders. The script also generates a .TSV file containing the 
residue distances.  
#Run the script 
sbatch workshop_scripts/s3_filter_and_extract_binders.sh 

 
We can see that not all of the binders passed our initial, hotspot-based filtering. 
#View the accepted binders 
ls -l accepted_binders/ 

 

 
 
And if we want, we can see the distances calculated for each binder and hotspot:  
#Edit the script as needed 
head residue_distances.tsv 

 
 
Step 3. Run FoldSeek to identify homologous host protein substructures 
You may be interested in which binders resemble experimentally determined protein-protein interactions. For 
this, we can use FoldSeek! There are too few binders in this example to get meaningful results, but it is 
something to keep in mind. In my experience, less than 100 binders will likely lead to spurious results. When 
interpreting the results, there are a few factors to keep in mind, such as: 

● What type of protein is your anticipated PPI?  
● Where is it located in the cell? Is the subcellular location similar to that of your query protein in the PPI?  
● Does the target protein have annotations that could help you distinguish likely PPIs?  

#Run FoldSeek against a target database of rice proteins and Filter the results by TM score 
sbatch workshop_scripts/s4_foldseek_run_initial_query.sh 
 
#Optionally view the results file 
head AvrPikD_binder_target_foldseek_results.tsv 



Amongst our query proteins, for example, we see proteins like Q7XJV3 and Q7XJV0 which contain a Heavy 
Metal Binding Domain that is found in various resistance proteins in rice! If we take closer look at the alignment 
of the binder with the protein, we find that the overlap is in that critical domain. We’ll want to take a closer look 
at these target proteins for in vitro validation! This is an overview of the protein and its domains from the 
database InterPro (https://www.ebi.ac.uk/interpro/protein/unreviewed/Q7XJV3/).  

 
 
[Optional] View the FoldSeek alignment. 
Running the following will provide an HTML file that shows the structural alignment of the binder and target 
protein’s domain. Notice that because we didn’t proceed with using Protein MPNN & AlphaFold to assign a 
sequence to the binder, the structure will contain all Glycine residues.   
#View a potential PPI 
sbatch workshop_scripts/s5_view_query_target_alignment.sh 

 
 



Step 4. RFdiffusion on the NVIDIA NIM microservice [## Estimated runtime: < 1 minute ] 
NVIDIA NIM is a part of NVIDIA, and provides a set of easy-to-use microservices designed to facilitate the use 
of generative AI tools. They also offer pre built containers and APIs to facilitate sharing models. For this part of 
the tutorial we’re going to go through an example using NVIDIA https://build.nvidia.com/ipd/rfdiffusion. 
Compared to the Google Colab, this is the more simple implementation of RFdiffusion since you only need to 
specify your target protein, contigs, and hotspot residues. Depending on the user preferences, this can be 
disadvantageous as you cannot prepare more than one run at a time without a key.  
 
If you choose to follow along, you’ll need the following:  

● Download the .PDB file (7BNT.pdb) 
● Contig specs: C30-113/0 50-75  
● Hotspot Residues specs: C46,C47,C48,C64,C66,C67 

 

 



Step 5A. Google Colab RFdiffusion: Setup [## Estimated runtime: < 5 minutes ] 
This is the most updated version of the Google Colab implementation of RFdiffusion 
(https://colab.research.google.com/github/sokrypton/ColabDesign/blob/main/rf/examples/diffusion.ipynb). You 
can log into Google Colab, or follow along here. The notebook is a good compromise between the simplicity of 
the NVIDIA implementation, and the more detailed command line code.  
 
To get started, connect to a runtime. Every Google account has access to a limited number of free runtime 
units on the T4 GPUs. Run the block ‘ setup RFdiffusion ‘ (click the play button) to install the packages and 
dependencies. This should take around 3 minutes.  
 
Step 5B. Google Colab RFdiffusion: Input Parameters for Binder Generation 
[## Estimated runtime: < 7 minutes ] 
As it’s running, you’ll also see protein backbone being generated! After the entire run, you’ll have the option of 
viewing each binder. If you’d like to follow along, the parameters you’ll need for this step are:  
 

name: AvrPikD your name for the binders 

contigs: A1-113:75 specifies the generation of binders 75 amino-acids long between 
residues 1-113 on the chain A of the input .PDB file.  

pdb: C4B8B8 the name of the .PDB file to use. The Google Colab implementation 
of RFdiffusion is set up to automatically pull from the AlphaFold2 
database if you use a UniprotKB identifier. So, In this instance, 
we’re using the UniprotKB identifier for AvrPikD (C4B8B8) 

hotspot: A46,A47,A48,A64,A66,A67 The chain and residues at the protein-protein interaction interface. 

chains: A The chain used for diffusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Step 5C. Google Colab RFdiffusion: Input Parameters for Binder Generation 
[## Estimated runtime: < 7 minutes ] 
The Google Colab implementation takes binder generation one step forward by using AlphaFold2-multimer and 
ProteinMPNN. These pipelines design a sequence to the binder, and indicate the likelihood that the structure is 
‘real’ based on AlphaFold2-multimer parameters.   
 

num_seqs: 8 The number of sequences to sample for each binder 

mpnn_sampling_temp: 0.1 The diversity of sequences to sample 

rm_aa:  Amino acids to exclude from the sequences 

use_solubleMPNN: False Encourage solubility when designing protein sequences 

intial_guess: True The chain and residues at the protein-protein interaction interface. 

num_recycles: 3 The number of recycles 

use_multimier: True The chain used for diffusion 



 

 
 
Then you have the option to view and download the results. The 
download may take a while depending on the complexity and 
number of binders you create.



 


